Методы вычислений

Численные методы дифференцирования функций

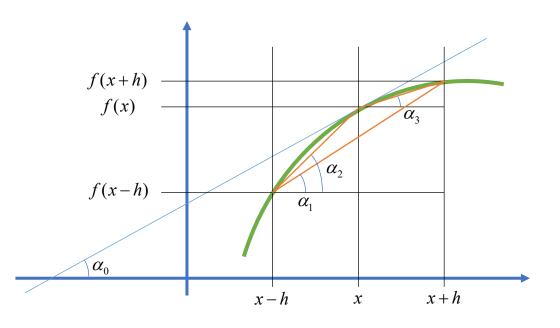
Андрей Леонидович Масленников amas@bmstu.ru

Численное дифференцирование функций через конечные разности

Численное дифференцирование — определения значений производной n-ого порядка заданной функции, в основе которого лежит аппроксимация производной на небольшом участке.

Особенности:

- 1. точность зависит от аппроксимации;
- 2. вычислительная неустойчивость. особенно при наличии случайных составляющих



Прямые конечные разности:

$$f^{(1)}(x) pprox rac{f(x-h)-f(x)}{h}$$
 1 порядок точности

Обратные конечные разности:

$$f^{(1)}(x) \approx \frac{f(x) - f(x - h)}{h}$$
 1 порядок точности

Центральные конечные разности:

$$f^{(1)}(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$
 2 порядок точности

Центральные конечные разности:

$$f^{(1)}(x) \approx \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

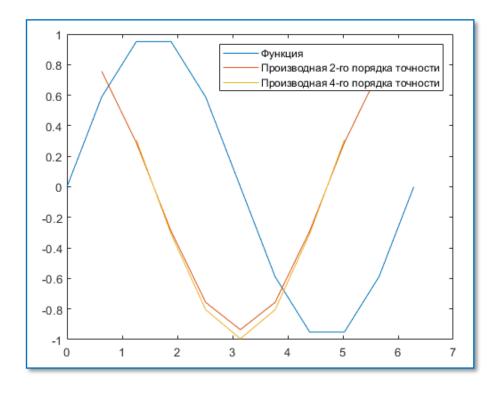
Fornberg B. *Generation of finite difference formulas on arbitrarily spaced grids*. Mathematics of computation, 1988, 51(184), pp.699-706.

Численное дифференцирование функций через конечные разности

2 порядок точности:

$$f^{(1)}(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

В качестве примера возьмем функцию $f(x) = \sin(x)$



4 порядок точности:

$$f^{(1)}(x) \approx \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

x	f(x)	$f_0^{(1)}(x)$	$f_2^{(1)}(x)$	$f_4^{(1)}(x)$
0.00	0.00	1.00		
0.63	0.58	0.81	0.76	
1.26	0.95	0.31	0.29	0.31
1.89	0.95	-0.31	-0.29	-0.31
2.51	0.58	-0.81	0.76	-0.81
3.14	0.00	-1.00	-0.94	-0.99
3.77	-0.58	-0.81	-0.76	-0.81
4.40	-0.95	-0.31	-0.29	-0.31
5.03	-0.95	0.31	0.29	0.31
5.66	-0.58	0.81	0.76	
6.28	0.00	1.00		

Численное дифференцирование функций через конечные разности

Таблица коэффициентов для прямых и обратных конечных разностей

Порядок производной	Порядок точности	0	1	2	3	4
$f^{(1)}(x)$	1	-1	1			
	2	-3/2	2	-1/2		
	3	-11/6	3	-3/2	1/3	
	4	-25/12	4	-3	4/3	-1/4

Таблица коэффициентов для центральных конечных разностей

Порядок производной	Порядок точности	-4	-3	-2	-1	0	1	2	3	4
$f^{(1)}(x)$	2				-1/2	0	1/2			
	4			1/12	-2/3	0	2/3	-1/12		
	6		-1/60	3/20	-3/4	0	3/4	-3/20	1/60	
	8	1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280
$f^{(2)}(x)$	2				1	-2	1			
	4			-1/12	4/3	-5/2	4/3	-1/12		
	6		1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90	
	8	-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560

Численное вычисление матрицы Якоби через конечные разности

Матрица Якоби

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Особенности решения

- 1. большой объем вычислений; m(n+1) раз вычисляется f(x) для прямых 2mn раз вычисляется f(x) для центральных
- 2. вычислительная неустойчивость. особенно при наличии случайных составляющих

Формула расчета через прямые конечные разности

$$J_{ij} = \frac{f_i(x_1, x_2, \dots, x_{j-1}, x_j + h, x_{j+1}, \dots, x_n) - f_i(\mathbf{x})}{h}$$

Формула расчета через центральные конечные разности

$$J_{ij} = \frac{f_i(x_1, x_2, \dots, x_{j-1}, x_j + h, x_{j+1}, \dots, x_n) - f_i(x_1, x_2, \dots, x_{j-1}, x_j - h, x_{j+1}, \dots, x_n)}{2h}$$

Метод Бройдена

Матрица Якоби

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Формула расчета по методу Бройдена

$$\mathbf{J}_{k} = \mathbf{J}_{k-1} + \frac{\mathbf{f}(\mathbf{x}_{k}) - \mathbf{f}(\mathbf{x}_{k-1}) - \mathbf{J}_{k-1}(\mathbf{x}_{k} - \mathbf{x}_{k-1})}{\|\mathbf{x}_{k} - \mathbf{x}_{k-1}\|^{2}} (\mathbf{x}_{k} - \mathbf{x}_{k-1})^{\mathrm{T}}$$

Особенности решения:

- 1. нужно задать J_0 ;
- 2. объем вычислений 2mn всегда.

Метод Бройдена—Флетчера—Голдфарба—Шанно (BFGS)

Матрица Гессе

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

$$\mathbf{O}$$
Особенности решения
1. нужно задать \mathbf{H}_0 ;
2. вычисляется для одной функции.
$$\mathbf{C}$$
Трого говоря, BFGS — алгоритм решения нелинейной оптимизационы

Формула расчета по методу BFGS

$$\mathbf{H}_{k} = \mathbf{H}_{k-1} + \frac{\mathbf{H}_{k-1}\mathbf{S}_{k-1}\mathbf{S}_{k-1}^{\mathrm{T}}\mathbf{H}_{k-1}}{\mathbf{S}_{k-1}^{\mathrm{T}}\mathbf{H}_{k-1}\mathbf{S}_{k-1}} + \frac{\mathbf{y}_{k-1}\mathbf{y}_{k-1}^{\mathrm{T}}}{\mathbf{y}_{k-1}^{\mathrm{T}}\mathbf{S}_{k-1}}$$

где

$$\mathbf{s}_{k-1} = \mathbf{x}_k - \mathbf{x}_{k-1}$$
$$\mathbf{y}_{k-1} = \nabla \mathbf{f}(\mathbf{x}_k) - \nabla \mathbf{f}(\mathbf{x}_{k-1})$$

решения нелинейной оптимизационной задачи в котором указанным способом вычисляется матрица Гессе

Численное дифференцирование с использованием фильтра Савицкого—Голея

 $m{\Phi}$ ильтр Савицкого—Голея — цифровой фильтр, работающий аналогично подходу с конечными разностями, позволяющий вычислять производные n-го порядка

Формула для расчета

$$f^{(1)}(x) = \sum_{k=-n}^{k=+n} C_k f(x_k)$$

расчет ведется со сдвигом по времени

Таблица коэффициентов фильтра Савицкого—Голея

Порядок производной	Тип	Размер окна	Коэффициент нормализации	-4	-3	-2	-1	0	1	2	3	4
$f^{(1)}(x)$ квадр	линейный или	3	2				-1	0	1			
	квадратичный	5	10			-2	-1	0	1	2		
	1 или 2 порядков	7	28		-3	-2	-1	0	1	2	3	
		9	60	-4	-3	-2	-1	0	1	2	3	4
	кубический	5	12			1	-8	0	8	-1		
		7	252		22	-67	-58	0	58	67	-22	
		9	1188	86	-142	-193	-126	0	126	193	142	-86